The Role of Noise in Visual Deprivation
a comparison between models and experimental results
in visual cortex

Brian Blais, Nathan Intrator, Harel Shouval, L. N Cooper
Institute for Brain and Neural Systems
Brown University
THE PROBLEM

- Two forms of long-term depression (LTD)
 - heterosynaptic LTD
 - homosynaptic LTD
- Can these synaptic depression mechanisms account for the ocular dominance shift in monocular deprivation?
- Can we find a way to distinguish between these two different types of depression?
Monocular Deprivation (MD)

(Mioche and Singer, 1989)
HETEROSYNAPTIC LTD

input stimulus

HFS

synapse A

synapse B

(Christie et al., 1995)
Homosynaptic LTD

input stimulus
LFS
synapse A
synapse B

(Dudek and Bear, 1992)
Model Architecture

$\mathbf{c} = \sigma (\mathbf{m} \cdot \mathbf{d})$

Diagram:
- Image Plane
- Left Retina
- Right Retina
- LGN
- Cortex (single cell)

Graph:
- σ function
- $\mathbf{c} = \sigma (\mathbf{m} \cdot \mathbf{d})$
Heterosynaptic LTD

\[\frac{d \mathbf{m}}{dt} = f(c) \mathbf{d} - g(c) \mathbf{m} \]

- PCA, non linear PCA, subtractive kurtosis, subtractive skew
- Synaptic competition works using a weight decay term
- MD: more noise to closed eye reduces the effect of competition
Homosynaptic LTD

\[
\frac{dm}{dt} = h(c, \theta) d
\]

- quadratic BCM, multiplicative kurtosis, multiplicative skew
- synaptic competition works using whole cell sliding threshold
- MD: more noise to closed eye increases the effect of depression
MD Simulation: Heterosynaptic
Low Noise (TTX)

RF → RF →

Cell Response

Stimulus Orientation
Closed eye
Open eye

Heterosynaptic
High Noise (Lid Suture)

RF → RF →

Cell Response

Stimulus Orientation
Closed eye
Open eye
MD Simulation: Homosynaptic
Low Noise (TTX)

RF → RF →

High Noise (Lid Suture)

RF →
Experimental Results

- 2 days MD
- 2 days MI

(N=273)

(N=238)

(Rittenhouse et al., 1997)
SUMMARY

• Predictions
 homosynaptic LTD: more noise \(\uparrow\) faster OD shift \(\uparrow\)
 heterosynaptic LTD: more noise \(\uparrow\) slower OD shift \(\downarrow\)

• Outcome
 experimental results: more noise \(\uparrow\) faster OD shift \(\uparrow\)

EXPERIMENTS TO DO

* chronic deprivation experiments
* measurements of LGN output statistics