Single Cell BCM with Natural Scene Input

• define the problem, notation, and implementation
• measure of the “1/2” life of activity
• compare learning rules
• effect of non-linearities in cortical and LGN cells
• effect of changing the memory constant, τ, and the learning rate, η
• image values before LGN sigmoid: $\approx [-5:5]$

• sigmoid defined:

$$
\sigma(x, v_1, v_2) = \begin{cases}
 v_2 \left(\frac{2}{1 + \exp(-2x/v_2)} - 1 \right) & \text{if } x > 0 \\
 v_1 \left(\frac{2}{1 + \exp(-2x/v_1)} - 1 \right) & \text{if } x < 0
\end{cases}
$$

• LGN sigmoid: $\sigma(x, -2.0, 7.0)$

• cortical sigmoid: $\sigma(x, -1.0, 50.0)$

• $c = \sigma_{\text{cortical}}(\mathbf{m} \cdot \mathbf{d})$

• $\dot{\theta} = \frac{1}{\tau}(c^2 - \theta)$

• $\dot{\mathbf{m}} = \eta c(c - \theta) \mathbf{d}$ or $\dot{\mathbf{m}} = \eta c(c - \theta) \mathbf{d}/\theta$
Classical Rearing Experiments

- Normal Rearing (NR):
 - start \textbf{unselective} (random weights)
 - \textbf{both} eyes are presented with input
 * develop \textbf{orientation selectivity} in \textbf{both} eyes

- Monocular Deprivation (MD):
 - start after NR, with both eyes selective
 - \textbf{one} eye is closed (presented with uncorrelated input)
 * closed eye \textbf{loses selectivity} and drops to zero activity
 * open eye becomes \textbf{stronger} (ocular dominance shift)

- Binocular Deprivation (BD):
 - start after NR, with both eyes selective
 - \textbf{both} eyes are closed
 * \textbf{no} OD shift, neuron remains \textbf{binocular}
 * closed eyes drop in activity, but \textbf{not} to zero
 * drop in activity is \textbf{slower} than MD

- Reversed Suture (RS):
 - start after MD, with one eye selective
 - the closed eye is now open, and the open eye is closed
 * newly open eye recovers activity \textbf{after} the newly closed eye loses activity
 * drop in activity is \textbf{slower} than MD
• fit to $y(t) = \Theta(t - t_0) \cdot (y_1 + y_0e^{(t-t_0)/t_1})$

• $\Theta(t - t_0)$ defined:

$$\Theta(t - t_0) \equiv \begin{cases}
1 & \text{if } t > t_0 \\
0 & \text{if } t < t_0
\end{cases}$$

• $t_0 \equiv$ the time where the activity passes above $\frac{1}{30}$ of maximum. (threshold is arbitrary)
- \(\tau = 1000, \eta = 5 \cdot 10^{-5} \), learning rule with \(1/\theta \).
- Development times (\(t_1 \)) in units of \(1/\eta \).
 - NR: 14.9 14.9
 - MD (left closed): 5.4 8.9
 - RS: 11.7 8.6
 - BD: 13.1 12.9
\[\tau = 2000, \eta = 5 \cdot 10^{-6}, \text{learning rule without } 1/\theta \]

- Development times \(t_1 \) in units of \(1/\eta \).
 - NR: 1.5 1.5
 - MD (left closed): 0.8 1.3
 - RS: 2.7 2.1
 - BD: 2.6 2.5
• $\tau = 2000$, $\eta = 5 \cdot 10^{-6}$, learning rule with $1/\theta$

• Development times (t_1) in units of $1/\eta$.
 - NR: 13.59 13.25
 - MD (left closed): 4.87 11.15
 - RS: 15.25 9.90
 - BD: 20.62 21.87
• The figure is broken up into three sections corresponding to
 \[
 \cdot \sigma_{\text{LGN}}(x, -2, 2)
 \cdot \sigma_{\text{LGN}}(x, -2, 7)
 \cdot \sigma_{\text{LGN}}(x, -7, 7)
 \]
 • development times are \textbf{not} sensitive to changes in the LGN sigmoid
- The figure is broken up into four sections corresponding to
 - $\tau = 250$ and $\eta = 5 \cdot 10^{-5}$
 - $\tau = 500$ and $\eta = 5 \cdot 10^{-5}$
 - $\tau = 1000$ and $\eta = 1 \cdot 10^{-4}$
 - $\tau = 1000$ and $\eta = 5 \cdot 10^{-4}$
- if η is too large, then the neuron does not become selective
- the model is fairly robust to changes in the memory constant, τ
Conclusions

• have a quantitative measure of the development times for the neuron

• measure could be used to guess simulation run times

• high variance makes it more difficult to notice effects of parameters

• learning rule with $1/\theta$ more robust with parameters, but slower than the rule without the $1/\theta$

• neuron is robust over changes in LGN sigmoid, and in the memory constant

• neuron is sensitive to high learning rates